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A WH/GSMT-Based Full-Wave Analysis
for Planar Transmission Lines Embedded
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Abstract—A new full-wave analysis method, referred to as the
WH/GSMT, is developed to solve multilayered planar transmis-
sion line problems. First, the scattering of an obliquely incident
parallel plate mode (PPM) by a PEC half plane embedded in a
multilayered isotropic dielectric substrate within a PEC parallel
plate region is analyzed via the Wiener-Hopf (WH) technique.
The solution is then incorporated into the generalized scattering
matrix technique (GSMT) to find the (complex) propagation
constant and characteristic impedance of the planar transmission
lines. The lateral power leakage is taken into account rigorously
in the WH/GSMT. Numerical results including the microstrip
line, conductor-backed slotline, coupled microstrip lines, and
antipodal finlines are presented along with a discussion of the
advantages/disadvantages of this method.

[. INTRODUCTION

NEW rigorous full-wave analysis method, referred to as

the WH/GSMT, is presented to solve multilayered planar
transmission line problems [1], [2]. The planar transmission
lines considered here are assumed to be perfect electric con-
ductors (PEC) of infinitesimal thickness which are embedded
in multilayered isotropic dielectric substrates. The WH/GSMT
consists of two key steps. First, the canonical scattering
problem of an obliquely incident PPM by the edge of a PEC
half plane embedded in a multilayered dielectric substrate
within a PEC parallel plate region, as depicted in Fig. 1, is
analyzed via the WH technique. Fig. 2 shows the side view of
the geometry. Note that a PEC top cover is included in order to
simplify the factorization process in the WH procedure, which
otherwise involves a complicated integral due to the branch cut
in the corresponding open region problem. However, as long
as the circuit is used for guided waves rather than radiation,
the effect of the top cover is negligible if placed far enough.
The solution is then written in the form of compact scattering
matrices and incorporated in the GSMT formulation [3], [4]
to solve planar transmission line problems. The whole scheme
can be viewed as an important extension of Oliner and Lee’s
work [6], [7] or a more efficient version of the mode matching
method [3]. Note that in the mode matching method, the
coefficients of the scattering matrices for the canonical half
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Fig. 1. The geometry of the canonical problem: A PEC half plane embedded
in a multilayered dielectric region within a PEC parallel plate waveguide.
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Fig 2. Side view of the geometry of the canonical problem depicled in

Fig. 1.

plane problem are obtained numerically, whereas, they are
obtained analytically in the WH/GSMT.

Besides its crucial role in the WH/GSMT method, the
canonical half plane scattering problem is by itself interesting
and important in other applications. The WH procedure used
here is a generalization of the work by Chang and Kuester
[8], who considered the single-layered case, to treat the more
complex multilayered geometry. Although the WH procedure
is highly analytical, it can yicld formally exact, closed-form
solutions. The key steps of the WH analysis are presented here
in a systematic way so that the solution to the multilayered
case can be obtained by extending the solution to the single-
layered geometry in a straightforward manner. It is also
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possible to observe some interesting analogies between the
WH/GSMT and the spectral domain approach (SDA) [3], [9],
[10], [13], such as the Green’s function, basis functions, and
so on. Moreover, although the SDA has been applied to solve
planar transmission line problems for a long time [3], [9],
[10], the lateral power leakage to source-free characteristic
modes, like the surface wave modes, has not been taken into
account rigorously until recently [11]. In the WH/GSMT, the
lateral power leakage is contained in the analysis and no
extra manipulation is needed when the propagation constant
becomes complex.

This paper is organized as follows. The WH solution to the
canonical half plane problem is presented in Section II. The
transverse resonance relation for a single microstrip line built
up with the GSMT is given in Section III. Numerical results
based on the WH/GSMT for some common planar trans-
mission lines, including the microstrip line, conductor-backed
slotline, coupled microstrip lines, and antipodal finlines are
given in Section IV. Coplanar waveguides with infinite/finite
extent lateral ground planes have also been considered with
this method; however, they will be discussed in another
paper. Section V discusses the advantages/disadvantages of the
WH/GSMT. The time convention ¢’“? is used and suppressed.

II. WH SOLUTION TO THE HALF-PLANE PROBLEM

A. Scattering of a T' M, PPM Obliquely Incident from Region 2

Referring to Fig. 2, denote the region y<0,0<z< A4 as
region 1; y>0,0<z< D as region 2; and y>0,D<z< A4
as region 3. As is well known, the fields in the multilayered
dielectric region are best expressed in terms of the TE, and
TM, vector potentials. Assuming the incident field has the
e~7*022 dependence along the edge direction where kq is the
free space wave number, then all the scattered fields must have
the same dependence in the z direction since the geometry
is two dimensional. The common factor e /%02 will then
be suppressed where « is a given constant for the canonical
problem. We require Re[a]>0 and Im[a] < 0 in order
to satisfy the radiation condition as * — oo. The Fourier
transform of f(y) is defined as usual by

F) = ;c_fr /jo fe™dy = fL(N)+ F-() (1)

where f,(\) and f_(\) are the one-sided Fourier transforms,
namely,

F+ ) =-§§’; fo Fly)e™ dy @

N ko [© .
=52 / F)e™ dy 3)
The inverse Fourier transform is then given by
Ily) = / F)e R . @)

Before starting to solve the canonical scattering problem,
some functions are first introduced such that the fields in

each region can be easily described. As in the SDA [12],
[13], the multilayered structure can be viewed as pieces of
transmission lines connected together along the z direction.
Thus, the propagation matrices P, and P, for TM, and
TE. polarized fields, respectively, are introduced. They are
analogous to the ABCD matrix in microwave circuit theory,
namely,

B [ cos(ks, z;) Zr]
P.(\z) = ?

sin (K, z;)

_ ’ &)
= cos (k-, z;)

sin (k, z;)
L e,

and
Hr,

B cos (kz, 2;) sin (k, z;)
Pahve)= | ©
tsin (k. z,)  cos(kz,z,)

L e,

where k., = koy/er, pir, — (0 + A2) is the wave num-
ber along the z-axis in the jth layer, ¢, and p,, are the
corresponding relative permittivity and relative permeability,
respectively, and z, is restricted to the range —d; < z; < d;
along the z-axis. Note that P, and Pj are defined in such
a way that they are entire and even functions of A. This
property is very important since the WH analysis requires
a rigorous knowledge of the analytical properties of the
functions involved. . .

With the propagation matrices P, and P, defined above,
one can then build up the functions 14, and g (as well as
Ppe and 5y ) along with their derivatives with respect to z to
express the TM, and TE,-polarized fields in different regions.
These functions incorporate the continuity condition between
dielectric layers and the boundary condition at z = D (z = A)
implicitly. Namely, in regions 1 and 2, the functions 4. and
14, and their derivatives with respect to z can be expressed
as follows:

1 9ae(X, z)] T

|:7;/)de()\az)a 6 82

= Pe(M2:)Pe(Ndic1) - Pe(A d-p)[1,0]T (1)

and

T
Va2, - 22

= Pu(N 2)Pr(\diz1) - Pa(A doan)[0, 1] (®)

_ -1 _ . .
where zg = E]=_M7j¢0 dj,z, = z — zq, and z is located in

the sth layer of the dielectric substrate; whereas, in region 3,
the functions . and 1 and their derivatives are given by

1 (N 2)]"

(X, 2), €r, Oz

= PN\ 5)Pe(, ~dig1) -+ Po(A, —dn)[1, 07
©)
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Fig. 3. The integration path in the X plane.

and

1 3 (A, 2)]"
T/th(/\,z), —/I;T

= Pr(\Z)Pu(, —dig1) - Pr(\, —dw)[0, 1]7
(10)

where z, = X__ 3, odj, and Z, = z — 2, The superscript
T in (7)—(10) is the transpose operator and the column vectors
[1, 017 and [0, 1]7 come from the boundary conditions that
force the tangential electric fields to vanish on the PECs at
z=0and z = A .

Similarly, with P, and P}, the following functions D,,())
whose zeros determine the allowable normalized propagation
constants of the PPM’s in the y direction for each region with a
given «, can be constructed. In Dip()\), the subscript ¢ denotes
the region (7 = 1, 2 or 3), while p = e or p = h, denotes the
TM, or TE, polarization, respectively.

D1e(N) =[0,1P. (A, dn) - Pe(X, dp) P, du)
Po(Ad_1)Pe(A, dz) - Po(X, d_p)[1,0]7
Dse(A) =[0,1]Pe(A, d_1)Pe(X, d_s) - Pe(A, d_nr)[1, 0]
Dse(A) = [0,1]Pe(X, —d1) Pe(, —da) - - -
Po(h, —dn)[1,0]7 (11)
Din() = [1,0[Py(X, dn) - Pr(X, do)Ph(, di)
PR d_1)Pr(N, d_s) - Pr(\ d_p)[0,1]7
Dan(N) =[L,0]Pa(\, d—1)Pr(\, d—2) - - - Pr(A. d_p)[0, 1]"

Dan(A) = [1,0]Pr(A, —d1)Pr(A, —da) - -

- Pa(A, —dn)[0,1]F (12)
Since D,, is an even function of A, the roots Ay, ,n =
1,2, .- are symmetrically paired with respect to the origin in
the A plane, as indicated in Fig. 3. Note that X, lies in the
lower half A plane. while —X,,, in the upper half A plane.

Now let us consider the incident field that is the mth TM,
polarized PPM obliquely incident onto the edge of the PEC
half plane from region 2; namely,

R HE T

ko (@5 02) 7]

. 8¢de(_/\m7z) eFkoAmy
0z

1 Ak +ay)

m (a? +AZ,)

Einc(wayu Z) =

Hin(:(m’y’z) == Tpde(_)‘maz)ejk())\my

(13)

for —co<y<o0,0 < z<D; where 7y is the intrinsic
impedance of free space, the superscript ‘inc’ denotes the
incident fields, while the subscript ‘4’ denotes the tangential
fields and A, stands for Ag., for the sake of brevity. This
field can also be referred to as the unperturbed field because
it is the field that would exist if the PEC half plane were
extended to y — —oo.

Usually, in the WH analysis, a small loss in the material
is introduced first and then the lossless case is treated as the
limiting case of vanishing loss afterwards. Here, the lossless
case is considered directly for simplicity. However, this should
by no means be a source of confusion. If the dielectric
materials are lossless and « is real, then the integration path
is along the real X\ axis, as shown in Fig. 3. The following
formulation is based on Jones’ method [4], [5].

The total fields are equal to the sum of the incident and
scattered fields; namely,

Etot — Einc + ES, Htot — Hinc = (14)

where the superscripts ‘tot’ and ‘s’ denote the total and scat-
tered fields, respectively. Assume the spectral representation
of the scattered field for z < D to be

B9 = B L)
HS(\ 2) = Hd(/\)%
8 f
SN It St BN G
Et()"z) - _]To (012 + )\2) Ed()\) Zd6(>‘7D)
(A% — aF) an(A, 2)
— 7[0Wﬂr(‘z)Hd(}\)m
1 (A% —ag) Yae(Nr2)
0 =5 o NG 50 D)
B
IECE SR DTN R
ko (@2 +22) " gan (X, D)
and for z > D,
F02) = By 2202
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Hb()\) /(/ybh(A7 Z)

Hi (N 2) = D)
e
o ((a2+A2)) (2 )Hb(A)%
RN, ) o
ko (o +A%) bon(N, D)

where €,.(z) and p.(z) are piecewise constant functions which
assume the values ¢, and p,, , respectively, in the #th layer.
E4(A), Hy(\), Ey(A) and Hy(A) are the unknown functions to
be solved. The scattered fields in (15) and (16) already satisfy
the boundary condition for the PECs at z = 0 and z = A and
as well as the continuity condition at the interface between
any two dielectric layers for regions z < D and z> D. The
remaining condition that needs to be enforced is at z = D
where the PEC half plane resides; namely,

Et°t(y,z = D) =0; 0<y< oo a7

Ef'(y.z=D_) =E{*"(y,z = Dy);  —oo<y<0
(18)

H{(y,z = D) =H{**(y,2=Dy);  —oco<y<0
(19)

along with the edge condition near y = 0,z = D and the
radiation condition for y — oo and —oo. With all the functions
defined above, the scattering problem of a PPM by a PEC
half plane embedded in a multilayered dielectric region is
reduced to a formulation that is similar to the corresponding
single-layered one.

Notice that in the spectral domain, the TM, and TE,
potentials always give rise to tangential fields that are in one
of the following two mutually orthogonal directions for fixed
o and A; namely,

. (& —ay) . (ax+)y) 20
TV T Vg 20

This property, which is also important in deriving the Green’s
functions in the SDA [10], [13], makes the decoupling of the
boundary conditions at z = D possible.

Boundary conditions (17) and (18) together imply that
Ei(\z=D_)=E{\z=D,), Q1)

since EP¢(y,2 = D) = Ei"(y,z = D) = 0 for
—oo <y < oo. From (15) and (16), one obtains two relations

_lEd(/\)Dge()\) o ErlEb()\)DQe()\) (22)
wde(AaD) B '(/)be()\ap)
and
oy Ha(A) = pry Hy(A). (23)

The boundary condition (19) can be written as

HEOt(yvz = D+) - HEOt(yVZ = D—)

= —2xJIPy), —co<y<oo  (24)

where Jt%(y) is the total induced surface current on the PEC
half plane, which can be written as the sum of two portions:

Jtot(y) = {Jmc( y) +J3(v),

b

y>0
<0 (25)

The first portion Ji¢(y) is the surface current induced by the
incident field and defined as

Iire(y) = { -4 xHi**(y,z=D_), y>0

26
0, y<0 (26)

The other portion J3(y) is the unknown surface current
induced by the scattered field. Substituting (25) and (26) into
(24) and taking the Fourier transform yields

I:IE()HZ =Dy) - ﬂ:(A,Z =D_)

=Hi"(\z=D_)—zx j; (\) Q7

where the subscripts ‘+” and * ~’ denote the one-sided Fourier

transformed functions and

inc J 1 )\mfi-i-&f’ 'l/)e(—Am,D)
Bz =D = gt e

2rno (o + AZ,)
from (13) and (3). Equation (27) actually involves two scalar
equations since it is in a vector form. Applying (27) in the G
direction and using (22) and (28) gives

er, Ey(A\) Dac(N)
ke (A, D)Qe(A)

—J 1 Am
:%</\+/\ a2+)\2 )¢de( )\m,D)

+ ok + Ay) - S+()\)

(28)

29

where

Dy (A\)D3.(N)
koD1e(N)

Similarly, applying (27) in the ¥ direction and using (23) and
(28) gives

Qe(/\) = = Qe+ ()‘)QE_ (/\) 30

~jpeHy(N) _j 1 a
BT R A AL
+(-Ak+ay)- J:+(/\) (31)
where
koDop (M) Dsp (A
Qn()) = %)(A;’h() =Qn, (NQr_(N). (32

Qe(A) and Qn (), which are closely related to the Green’s
function kernels for the multilayered dielectric slab, are func-
tions to be factorized. The representation of (). p, as a product
of two functions Q.  n, and (._p_, which are regular
and free of zeros in the upper and lower half A planes,
respectively, is referred to as the factorization of ¢J. 5. Since
all the D;,(A) (¢ = 1, 2, 3; p = e, h) are regular and even
functions of A with simple zeros, the factorization is simple
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and the result is given in the appendix. Equations (29) and
(31) are the two WH equations that need to be solved. The
boundary condition (17) implies that Ei is regular in the lower
half A plane, or equivalently, Fy(A)D2e(A)/%se(A, D) and
Hy()) are regular in the lower half plane. From the edge
condition [4], we have Ep(A) ~ A™P, Hy(\) ~ A7P, j§+ -0~
/\"p,j; ¥ ~ A717P ag || — oo where 0 < p < 1. Also, from
(11), (12), (30), and (32), it follows that Q.(A) ~ X, Qp(A) ~
AL, Dae(A) /tpe (A, D) ~ X as |A| — oo. Thus, both (29) and
(31) can be written into a standard form of the WH equations
where one side of the equation is regular in the lower half
A plane while the other side is regular in the upper half A
plane. Note that there must be an overlapping region between
these two half planes, which is the real axis of the A plane
if « is real and all the dielectrics are lossless. By rearranging
(29) and (31), examining the behavior of various terms and
invoking Liouville’s theorem [4], one obtains

e BDs(N) 1
kose(A, D)Qe_(A) 2w (A4 Am)

. 'l,bde(_)‘m)D)Qe+(_)‘m)
. ] 'I,bde(_/\maD)
= —%W(er ()\) - Qe+(‘“/\m))
i Am

%mi/}de(_)‘my D)Qc, (\)
+no(ak +A§) - J2, Qe, (V)

- ;_Wwde(—xm,p)cz%(—xm)ol (33)

and

_jﬂrle _Li—a_ _
() 2me (@2 oz Vel Am D)0r, (A)

+ (=M% +0y) -T2, Qn. (V)
1
“_m7/)de(_)\m7D)Qe+(_/\m)C2 (34)
where C7 and C, are constants to be determined. Equations
(33) and (34) yield

€r, Ep(A) D2e(N)

kothpe( X, D) :;_Wlbde(—)\m,D)QeJr(_)\m)

1
: <C1 - m)Qe_()\> (35)

and
b Ho () = = 5N, D) e (—im)
- CyQn_(A)

The remaining task is to find the two unknown constants C
and Cj. Substituting (35) and (36) into (16), and using the
condition that E$(X, D) is regular in the lower half A plane

(36)

and thus cannot have a pole at A = —jo, yields
. , Qe, (jo)

CiQ. C = e 37

1Qe, (Ja) + CaQp, (jo) ETEw 37

Also, expressing J2 N (M) as a sum of its components in the
1 and ¥ directions, which can be obtained from (33) and

(34), and then requiring that J® . (A) be regular in the upper
half plane, which implies that J* . (A) cannot have a pole at
A = ja, yields

C Cy 1

— + — = — 38
0. Go) " G Ga) — Gar i Gy Y
Thus, €7 and C5 can be solved as
_ Am ja
G = (A2, + a?) + (A2, + az)Ql (39
and
® jC(
= 4
Gy ()\?n+012)92 (40)
where
2 (o) + 02 (ja
g, = 209+ 0, o) "
2, (o) — Q7 (o)
and
20.. (j .
QQ - Q +(]a)Qh+ (]Oé) (42)

2, (o) - @7, (o)’

Substituting the result of 'y and Cs back to (35) and (36), the
expressions for the functions Ey(A) and Hy(\) are obtained.
E4()\) and Hy{\) can be then be deduced from (22) and
(23), respectively. Consequently, all the terms for the scattered
fields in the spectral domain as defined in (15) and (16) are
known. The last step is to take the inverse Fourier transforms to
obtain the scattered fields in the spatial domain. This inversion
integral can be evaluated using the Cauchy Residue Theorem
after closing the original integration path (along the real A
axis) by a half circle of an infinitely large radius in the lower
half A plane when y >0, and likewise in the upper half A
plane when y < 0.

B. Generalized Scattering Matrix for the Half-Plane

To completely characterize the scattering properties of the
half-plane configuration depicted in Fig. 2, it is necessary to
consider six cases, namely, the incidence of a PPM from
each of the three regions where the PPM is either TM, or
TE, polarized. The analysis of one case was presented in
the previous subsection; however, the analytical details of
the other five cases will not be discussed here because they
are similar to the one considered above. Thus, after solving
six canonical scattering problems, the generalized scattering
matrix that characterizes the PEC half plane edge discontinuity
can be written down. Let the z-components of the total
electric and magnetic fields in different regions be expressed
as follows:

E.(y,2) = Z [Airnejkoheny + Al—ne_]k(J)\lenfl/]eln
n

H.(y,2) = Z [Bii-nejkoz\lhny + Bl—ne—Jkoz\lhny]hln
n

(43)
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if y<0 and
E, (y’ ): Z[A+ —]koany_i_jélr;bejkuh—beny]em7

y,z) Z[B+ —gkoMuh, y+B e]ko)‘lhny]hm

(44)

where i = 2 if y>0,2<D and ¢+ = 3 if y>0,2>D. The
modal functions e,,, and h,, for the nth TM_ and TE, PPM’s
in region ¢ are given by

_ 'l/}de(/\lenyz) _ ¢de()‘26n7z)

€in = ET(Z) ) ‘2n - 6,-(2) )
3 = %A—(iz)—) (45)
and
hy, = _ Yan(Ain,, 2) y = Yan( Aok, s 2)
" /j'r( ) ’ " Nr(z)
sy = f”h(’\_%nli). (46)
.U'r(z)

The edge can be viewed as a three-port circuit where the
scattering matrix [S] is defined below.

[(TAT1,1BYD), ([43], 1B3), ([A§), [BIDIT

= [SII(IAT] BT D), (1471, B2 1), (A5 1, [B DIF
(47)
where
[AF] = (A5, 455 - AL -],
[Bf|=[B3,BE---BE .., i=1,2,3. (48)

The matrix [S] consists of nine blocks of submatrices [\S,,];
namely,

[S11]  [S12]  [S1s]
[S]=|[S21] [S22] [S2s] |, (49)
[S31]  [Ss2] [Sas]
where each block [9;;] contains four submatrices,
— | [Srene] [Sw,]h]}
Sl = {55 (S]] G0

After lengthy algebraic manipulations, it turns out that all
the elements of the 36 submatrices can be expressed in a single
compact form instead of listing them case by case. Namely,
the mth row, nth column element of the submatrix [Sip ;4]
denoted by S;, ;,(mn,n), is given by

Szp,jq(m7 ’fL) = \Ilip('rn’)f-(m7 n; 'Lp:]Q)@Jq(n) (51)

i,j=1,20r3; p,g=cor hym,n=1,2,3---, where

d
\Ille(m) = _D2€(_)‘16m)/5 Dle(/\ = _Alem)
d
Uip(m) = —~koD2h(—/\1hm)/d/\ Din(A = —A1p,,)

d
\Pge(TrL) = ko/ X\ DQe()\ )\Qem)

d
Y Don(A = dan,,)

d
\IISE(m) = ko/d)\ DSE(/\ )\36.,”)

Wop(m) =1

d
sy (m) = EXD%()\ A3, )- (52)
The function F(m,n;ip, jq) consists of two parts,
f(m7n; Zp/jq) - fl (mv n; Zp,j(])fg('ﬁ% n; Z.pa JQ)a (53)
where the first part F; (m, n;ip, jg) is the product of two Q4
functions,
o Qp. (—Xip,,) if 7;:23}
Fi(m,n;ip,jq) = P+ Pm ) 7
i P-J9) {1/QP+(_ Aip,) 1 i=1
{ Qq+( an) %f j.=273}
1/Qq+( Ng,) i =1

(54)
and the second part Fa(m, n;ip, jq) is given by

Fa(m,n;ip, jq)
[ArAr — @ + ja(Ar + A1)Q
if (p,q)=(ee)
jaQa/no/(a® + )\2) it (p,q) = (h,e)
—7a92770/(a +25) it (p.g) =(eh)
[/\R)\I —o? - ja()\R + )\I)Ql]/()\R + )\1)/(012 + )\%)

/(Ar +A1)/(@® +29)

it (p,q)=(h,h)
(55)
where
[ i, ifi=2,3;
AR = { N, ifi=1
A ifj =23
/\ — J49n o ? 56
g {v)\m ifj=1 (56)
The functions ®,,(n) are given below.
1
(I)le(n) = kO e _¢de( ley,9 %2 = D)
O14(n) :"/)dh()\lhnyz =D)
®oc(n) :¢d6(_)\26n72 =D)
1 1
$op(n) = o n 1/}dh(—>\2hn,z =D)
@36(71) = _r‘pbe( )‘Senvz = D)
11 0
P3p(n) = —————Usn(—Aspn., 2 = D). (57

ko pir, Oz

III. TRANSVERSE RESONANCE RELATIONS

After solving the canonical half-plane scattering problem,
the second part of the WH/GSMT scheme is to build the
transverse resonance relation via the GSMT [3], [4], [14],
[15]. Take the single microstrip line as an example. The
cross-section is depicted in Fig. 4(a), where [a;] and [b;]
are vectors consisting of the amplitudes of both the TM,
and TE,. polarized PPM’s, including all the propagating and
leading evanescent PPM’s. The arrows indicate the lateral
direction of wave propagation while the vertical dotted lines
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Fig. 4. (a) Cross-section of a single microstrip line and (b) the equivalent

network model.

indicate the reference planes for defining [a,],[b;] and the
scattering matrices. Assume that all the fields have the e ~7ko®
dependence in the longitudinal z-direction, where « is the
" normalized modal propagation constant of the microstrip line
to be found. The microstrip line can then be viewed as two
discontinuities connected by two uniform transmission lines of
length w, one above and the other below the strip, as depicted
in Fig. 4(b). The scattering matrix [S¥] in Fig. 4(b) is the [S]
matrix obtained in Section Il while the matrix [S%] has a sign
difference in the elements corresponding to the cross-polarized
fields; namely,

S{;,yjq(m,n) = Sg,yjq(m, n) if (p,q) = (e,e) or (h,h)
(58)

Sé,jq(mvﬂ) = —Sff,,jq(m,n) if (p,q) = (e, h) or (h,e)
(59)

The matrices [T5(w/2)] and [T2(w/2)] in Fig. 4(b) are diag-
onal matrices that represent the phase change for a distance
w/2 of the PPM’s in the parallel plate waveguide region above
and below the conductor strip, respectively. After rearranging
the equations and eliminating some unknowns, one obtains the
transverse resonance relation as follows [3], [4]:

1-18%],  —[8G] 1flaz]] _
[ sGLm- [253%1] [[aal} =0 60
where []] is the identity matrix and
3
1851 = 3 (T3 (w/2)[SELL (W) [SEIT; (w/2)],  (61)

k=2

All the matrices [SE],[SE], [T2] and [1%] above are func-
tions of . The condition that the determinant of (60) vanishes
in order to have a nontrivial solution yields the desired values
of «. Therefore, similar to the SDA, the WH/GSMT vyields
a matrix where the zeros of its determinant have to be
determined numerically. In the WH/GSMT, the corresponding
eigenvector yields the amplitudes of the PPM’s while in the
SDA, it gives the amplitudes of the current basis functions.
Actually, it can be said that the WH/GSMT employs inhomo-
geneous plane waves (PPM’s) as the field basis functions. The

transverse resonance relation for other planar transmission line
configurations can be obtained in a similar way and it will not
be shown here.

IV. NUMERICAL RESULTS

Numerical results based on the WH/GSMT scheme are
presented for various planar microwave/millimeter wave trans-
mission lines. There are two kinds of parameters one needs
to choose when applying the WH/GSMT. The first one is the
number of terms, denoted by Nip, which is used for calculating
the infinite product Py, (¢ = 1, 2, 3; p = e,h) in (72) and
(74). Usually, these numbers are not very critical as long as
they are large enough. The situation is similar to truncating
the Sommerfeld integral over the semi-infinite range in the
SDA. Although the relative convergence phenomenon is not
particularly observed, the rule N1,/A ~ N,/D ~ N3, /B,
which is required if the mode matching method is applied, is
still recommended. For most of the cases, N;;, is smaller than
100. The second set of parameters are the number of PPM’s
retained in each region, which is analogous to the number
of basis functions used in the SDA. These numbers can be
estimated from the asymptotic behavior of A, given in (68).

The accuracy of the WH/GSMT method is assessed by com-
paring the results based on this method with those available in
the literature. Re[«] and I'm[a] denote the normalized phase
constant and normalized attenuation constant, respectively. For
the sake of convenience, the sign of I'm[c] is neglected in the
results shown.

A. Single Microstrip Line (SMS)

A wide SMS that was previously studied by Ermert [16],
[171 and Oliner er al. [6], [ 7] is considered in the first example.
Re[a] and I'm[«] are plotted as functions of frequency in Fig.
5 where the curves for N = 0, 1 and 2 correspond to the
dominant, first and second higher-order modes, respectively.
The dashed line in the Re[w] of Fig. 5 is the normalized phase
constant of the lowest order PPM between thé top and bottom
PEC planes, which will become the TM, surface wave when
the top cover is removed. The two dotted lines correspond to
values of \/€;; and /€2, respectively. The dashed line and
the /€2 = 1 dotted line are the thresholds of surface wave
leakage and space wave radiation, respectively, when the top
cover is removed. As shown in Fig. 5 the dominant mode
is bounded for all frequencies since most of the fields are
concentrated under the strip and thus have a higher effective
diclectric constant. As the frequency increases, Re[a] of this
mode will approach the limit \/€.1. The first and second
higher-order modes will have power leakage in the lateral
directions when their phase velocities are faster than that of
the PPM; the cut-off frequency for these higher order modes
is around 14.5 and 29.0 GHz, respectively. .

Since the microstrip line is relatively wide, only 1 and 2
evanescent PPM’s are used for the region above and below
the strip, respectively, and Ny, = 18, Ny =4, N3, = 14;p =
e, h. The curves for Refa] shown in Fig. 5 agree with [6] where
a simplified model is used, while I'm[«] tends to be larger
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Fig. 5. The normalized phase constant Re[a] and attenuation constant
Im[a] of a SMS versus frequency. €1 = 9.8,6r2 = 1.0,w = 3.0 mm,
t = 0.635 mm, & = 2.54 mm.

than that given in [6]. Note that it is usually more difficult to
achieve the same accuracy for Im [a] than Re[a].

B. Single Slotline (SSL)

Relo] and I'm[a] of a single conductor-backed slotline as
functions of the normalized slot width d/), are given in Fig.
6 where the solid line is obtained by the WH/GSMT while the
dotted and the dashed lines are calculated with the spectral
domain approach [11] and the spatial domain mode matching
method [20], respectively. The results based on these three
different methods generally agree well for both the real and
imaginary parts of a. The deviation when d/)g. is small or
large is probably due to the numerical disadvantage inherent
in the method used; namely, the spectral domain approach
will require a large number of basis functions when the slot
width d is large while for the spatial domain mode-matching
method and the WH/GSMT, many evanescent PPM’s have
to be included when d is very small. In this case, N, =
50, Nop = 20, N3, = 30;p = e, h and five evanescent PPM’s
are used in the slot region.

C. Coupled Microstrip Lines (CMS)

In Fig. 7, the even and odd mode dispersion characteristics
for three different types of CMS are given where the solid,

16

0.8 . ]
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d/ A
00 ¢
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051 - _ Shigesawa, Tsuji & Oliner

3]
£
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~30 . —
0.0 05 . 10
da/xe
Fig. 6. The normalized phase constant -Refo] and attenuation con-
stant Im[a] versus the normalized slot width - d/XAo: & = 2.25,

t/Xo = 0.267,h/Ao = 3.33.

dashed and dotted lines are for conventional CMS, CMS with
dielectric ovetrlay, and inverted CMS, respectively. Although
the top PEC cover is put infinitely far in [18], the result in
Fig. 7 shows good agreement with [18] with Hs = 4H;. For
the overlayed CMS, the normalized phase constants of the
even and odd mode are both quite close 1© /€1 (= /€2)
for all the frequencies because most of the fields are confined
in those two dielectric layers. The dispersion curve for the
inverted CMS has the largest variation among the three types
of CMS for the range of frequencies considered. In this case,
Ny, = 40,N3, = 8, N3, = 35;p = e,h and 7, 3, and 5
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Fig. 7. Even and odd mode dis;;ersion characteristics for three different types
of coupled microstrip lines. H; = Ho = W, Hs = 4H1,5 = 04 W,
er3 = 1.0.

evanescent PPM’s are used in the slot, below the strip and
above the strip, respectively.

The result for the characteristic impedance Z, which is
defined as P/|I|?/2 is given in Fig. 8, where [ is the
longitudinal current and P is the total power over the cross-
section. The general shape for the characteristic impedance
based on the WH/GSMT agrees with that given in [18] but
the values are higher than [18]. The characteristic impedance
is more susceptible to numerical inaccuracies than the phase
constant. This is analogous to the situation of the numerical
computation of eigenvalues and eigenfunctions.

D. Antipodal Finline

The antipodal finline depicted in Fig. 9 is chosen as an
example to demonstrate the versatility of the WH/GSMT.
The same parameters as in [19] are used in order to make
a comparison. The normalized wavelength \,/A¢ (= 1/Re[a])
and the characteristic impedance Zy versus the overlapped or
separation length s of two fins of the antipodal finline are given
in Fig. 10. When the fins are overlapped, as depicted in Fig.
9(a), it behaves like a parallel plate waveguide with most of
the fields concentrated in the overlapped region. The antipodal
finline without overlapping, as depicted in Fig. 9(b), is similar
to a unilateral finline, and it also resembles a partially filled
waveguide as the two fins recede to the side walls.

For the overlapping case, the results for both A,/Ag and
Zo agree well with {19]. For the nonoverlapping case, the

200 ———— .
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€ry W S W Ho
€r, H1
0 L L P .
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CM3 3 €4,=10.0,€:,=1.0

—— - overlayed CMS! €,,=10.0, € =10.0

--------------- inverted CMS: €,,=1.0, €:,=10.0

Fig. 8. Characteristic impedaﬁce defined by P/I? versus frequency for three
types of CMS. H; = Ho = W, H3 = 4H{,5S =04 W, &3 = 1.0.
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Fig. 9. Parameters used to describe (a) overlapped and (b) nonoverlapped
antipodal finline geometries. A = 2.845 mm, B = 5.69 mm, T" = 0.127
mm, €, = 2.22.

agreement is reasonable for both ), /Ao and Z, when the
operating frequency is 40 GHz. But for the other frequency,
namely for 27 GHz, which is close to the TEic cut-off
frequency 26.35 GHz for the rectangular waveguide (WG-22)
enclosure, the result is quite different from that in [19] for both
Ag/Ao and Zg. The impedance curves shown in Fig. 10(b) are
obtained from the expression V2/P. The integration path for
computing the voltage V' for the overlapping case is a vertical
path connecting the centers of the overlapped sections of the
fins, whereas, it is a straight line between the edges of two
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Zy of the antipodal finline.

fins for the nonoverlapping case. Actually, the nonoverlapping
case is not favorable for the WH/GSMT when the aspect ratio
S/B (= 0.5 S/A) is too small since many evanescent PPM’s
have to be included. This is why there is a gap between the
overlapping and nonoverlapping curves when S/A is small.
However, when S/A is around 0.3 to 0.6, the results based on
the WH/GSMT should be quite reliable, whereas, the spectral
domain approach, used in [19], may require a large number
of basis functions. Without further data from measurements
or from other numerical methods, it is difficult to state which
result is more accurate.

V. CONCLUSIONS

A novel approach, based on a hybrid procedure referred to
as the WH/GSMT, is developed to solve multilayered planar
transmission line problems. It is a rigorous, full-wave analysis
method. First, the scattering of an obliquely incident PPM
by the edge of a PEC half plane embedded in a multilay-
ered isotropic dielectric substrate within a PEC parallel plate
region is analyzed via the WH technique. This solution is
then incorporated in the formulation of the GSMT to find
the propagation constants and characteristic impedances of a
variety of planar transmission lines. The lateral power leakage
is taken into account rigorously in the WH/GSMT. Numerical
results including the cases for the microstrip line, conductor-
backed slotline, coupled microstrip lines, and the antipodal

finline are shown and compared with available references
found in the literature to assess the accuracy of the WH/GSMT.

Compared with the widely used spectral domain approach
(SDA), the WH/GSMT furnishes a different physical insight,
is suited for planar transmission line configurations with rela-
tively wide lateral dimensions, and requires similar amounts of
CPU time and memory storage space if the ratio between the
height and width of the parallel waveguide regions is not too
large, but requires a more involved analysis. The versatility
of the WH/GSMT is relatively limited because the complexity
of the transverse resonance relations will increase rapidly as
the transmission line configurations become more complicated.
However, when the distance between the edges of the various
PEC strips (or half planes) on the same dielectric interface is
relatively large, the WH/GSMT may be more efficient than the
SDA. In fact, as the lateral dimensions of the transmission lines
become larger, the WH/GSMT becomes more efficient because
a fewer number of evanescent modes are needed. On the other
hand, the SDA becomes inefficient due to the large number
of basis functions needed to obtain an accurate solution. One
example where this point is demonstrated, is in the analysis of
a conductor-backed coplanar waveguide (CBCPW) with finite
extent lateral ground planes [20]-[23]. A detailed WH/GSMT
based study of a CBCPW with single/double layered substrates
and with finite/infinite lateral ground planes will be described
in a separate paper. Generally, the WH/GSMT can be viewed
as a more efficient version of the spatial mode-matching
method and a complementary approach to the SDA. Note
that in the WH/GSMT, the scattering matrix is obtained
analytically, whereas, in the spatial mode matching method,
this matrix is obtained numerically.

V1. APPENDIX: FACTORIZATION OF Q.(X) AND Qp ()
As defined in (30) and (32).

Do (M) D3 (A
and
Qn(x) = _’fODih)(i)(l;ih(A) (63)

There is more than one way to factorize . and @ such
that

QEO‘) =Qc_ ()‘)Qe, (/\) (64)
and

Qr(A) = Qry (N)Qn_(A). (65)

where Q. (A) and @y, _,(}) are regular and free of zeros
in the upper (lower) half A plane.
We also require

Qe (—A) = Qc_(N) (66)
and

Qr, (=A) = Qn_(N). (67)
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It is known that when m is large [24],
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Based on the asymptotic behavior of these roots, a fast

)

converging factorization for Q. [25] is given as follows.

| A

(68)

(-5 )0
Qe, (V) =[Qe(A = 0)]1/2exN) Aze, Aze,

A
(1 N /\161 )

Pae(A)Pse(N)
. Ple(/\) g(/\)
where
Ak
x(A) :gT[D In(A/D)+ Bln(A/B)]
_ (1 — jAkoA/7)
9N =g j)\koB/w)F(Ol — jXkoD/m)’

I' is the Gamma function and

oo

H(l - /\/)‘1€n+1)
’Ple()\) — n=1
(1 — jAkoA/nm)

3

3
I
~

(1 - )‘/)‘28n+1)

R

7)28(>\) =
H (1~ jAkoD/n)
n=1
H(l — A A3epyy)
P3e()\) = 2021
H(l ~ jAkoB/nm)
Similarly,
Qr, (V) =[Qr(A = 0)]1/26X(A)22_}%)1\1_7(3)3\}){&g()\)
where
H (1 =X/ A1h,)
Pin(h) = 2=t
T1@ - irkod/nr)
[T =A%)
Por(A) = ==
H (1 — jAkoD/nm)
n=1

(69)

(70)

)

(72)

(73)

1Ta=A/2sm,)
Pan(A) = ==L ) (74)

[ee]

11 - ixkoB/nr)

n=1

Since the variables « and A always appear in the form a? + )2
in P, and P, they can be treated as a single variable
v = &+ A? when the zeros of D, are searched. Once ;,,, is
determined, o* can be subtracted from ~Z, to get A?, . Thus,
there is no need to search for ),, again when o changes.
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