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A WH/GSMT-Based Full-Wave Analysis

for Planar Transmission Lines Embedded

in Multilayered Dielectric Substrates
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Abstract-A new full-wave analysis method, referred to as the
WH/GSMT, is developed to solve multilayered plauar transmis-
sion line problems. First, the scattering of an obliquely incident
parallel plate mode (PPM) by a PEC half plane embedded in a
multilayered isotropic dielectric substrate within a PEC parallel
plate region is analyzed via the Wiener-Hopf (WH) technique.

The solution is then incorporated into the generalized scattering
matrix technique (GSMT) to find the (complex) propagation

constant and characteristic impedance of the planar transmission
lines. The lateral power leakage is taken into account rigorously

in the WH/GSMT. Numerical results including the microstrip
line, conductor-backed slotline, coupled microstrip lines, and

antipodal ftnlines are presented along with a discussion of, the

advantages/disadvantages of this method.

I. INTRODUCTION

A NEW rigorous fuI1-wave analysis method, referred to as

the WH/GSMT, is presented to solve multilayered planar

transmission line problems [1], [2]. The planar transmission

lines considered here are assumed to be perfect electric con-

ductors (PEC) of infinitesimal thickness which are embedded

in multilayered isotropic dielectric substrates. The WWGSMT

consists of two key steps. First, the canonical scattering

problem of an obliquely incident PPM by the edge of a PEC

half plane embedded in a multilayered dielectric substrate

within a PEC parallel plate region, as depicted in Fig. 1, is

analyzed via the WH technique. Fig. 2 shows the side view of

the geomet~. Note that a PEC top cover is included in order to

simplify the factorization process in the WH procedure, which

otherwise involves a complicated integral due to the branch cut

in the corresponding open region problem. However, as long

as the circuit is used for guided waves rather than radiation,

the effect of the top cover is negligible if placed far enough.

The solution is then written in the form of compact scattering

matrices and incorporated in the GSMT formulation [3], [4]

to solve planar transmission line problems. The whole scheme

can be viewed as an important extension of Oliner and Lee’s

work [6], [7] or a more efficient version of the mode matching

method [3], Note that in the mode matching method, the

coefficients of the scattering matrices for the canonical half
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Fig, 1. The geometry of the canonical problem A PEC half plane embedded
in a multdayered dielectric region within a PEC parallel plate waveguide.
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Fig 2. Side wew of the geometry of the cmonical problem depicted in

Fig. 1.

plane problem are obtained numerically, whereas, they are

obtained analytically in the WH/GSMT.

Besides its crucial role in the WH/GSMT method, the

canonical half plane scattering problem is by itself interesting

and important in other applications, The WH procedure used

here is a generalization of the work by Chang and Kuester

[8], who considered the single-layered case, to treat the more

complex multilayered geometry. Although the WH procedure

is highly armlytical, it can yield formally exact, closed-form

solutions. The key steps of the WH analysis are presented here

in a systematic way so that the solution to the multilayered

case can be obtained by extending the solution to the single-

layered geometry in a straightforward manner. It is also
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possible to observe some interesting analogies between the

WH/GSMT and the spectral domain approach (SDA) [3], [9],

[10], [13], such as the Green’s function, basis functions, and

so on. Moreover, although the SDA has been applied to solve

planar transmission line problems for a long time [3], [9],

[10], the lateral power leakage to source-free characteristic

modes, like the surface wave modes, has not been taken into

account rigorously until recently [11]. In the WH/GSMT, the

lateral power leakage is contained in the analysis and no

extra manipulation is needed when the propagation constant

becomes complex.

This paper is organized as follows. The WH solution to the

canonical half plane problem is presented in Section II. The

transverse resonance relation for a single microstrip line built

up with the GSMT is given in Section III. Numerical results

based on the WWGSMT for some common planar trans-

mission lines, including the microstrip line, conductor-backed

slotline, coupled microstrip lines, and antipodal finlines me

given in Section IV. Coplanar waveguides with infinitelfinite

extent lateral ground planes have also been considered with

this method; however, they will be discussed in another

paper. Section V discusses the advantages/disadvantages of the

WWGSMT. The time convention e~’”t is used and suppressed.

II. WH SOLUTION TO THE HALF-PLANE PROBLEM

A. Scattering of a TMZ PPM Obliquely Incidentfrom Region 2

Referring to Fig. 2, denote the region y <0,0< z < A as

region l;y>O, O<z<D as region 2;andy>0, D<z<A

as region 3. As is well known, the fields in the multilayered

dielectric region are best expressed in terms of the TEZ and

TM. vector potentials. Assuming the incident field has the

e–~~oax dependence along the edge direction where k. is the

free space wave number, then all the scattered fields must have

the same dependence in the z direction since the geometry

is two dimensional. The common factor e–J~O‘z will then

be suppressed where a is a given constant for the canonical

problem. We require E/e[a] >0 and lm[a] ~ O in order

to satisfy the radiation condition as x + cm. The Fourier

transform of ~(y) is defined as usual by

f(~) = $ r f(v)e’ko” dy = f+(~) + f-(A) (1)
co

where ~+(A) and ~_(A) are the one-sided Fourier transforms,
namely,

The inverse Fourier transform is then given by

(2)

(3)

PCc

f(y) = j f(A)e-ikOAy A (4)
—m

Before starting to solve the canonical scattering problem,

some functions are first introduced such that the fields in

each region can be easily described. As in the SDA [12],

[13], the multilayered structure can be viewed as pieces of

transmission lines connected together along the z direction.

Thus, the propagation matrices ~e and ~~ for TMZ and

TEZ polarized fields, respectively, are introduced. They are

analogous to the ABCD matrix in microwave circuit theory,

namely,

Fe(A, Zj) ==

COS (k., .Zj ) ~ sin (k., zj )
‘~J

k. 1(5)
“~ sin (kZj zj——

)Cos (kzj ZJ
CT3

and

[ Cos (k2,2j) & sin (kzj.zj) 1

where k=. = kO ~ cT, LLT, – (C12 + AZ) is the wave num-

ber along’ the z-axis ;n the jth layer, G., and LG., are the

corresponding relative permittivity and relative permeability,
respectively, and Zj is restricted to the range –dj s i+ s dj

along the z-axis. Note that P. and ~h are defined in such

a way that they are entire and even functions of A This

property is very important since the WH analysis requires

a rigorous knowledge of the analytical properties of the

functions involved.

With the propagation matrices P, and l’h defined above,

one can then build up the fUnCtiOnS +d. and ~dh (aS Well as

~b~ and q!h) along with their derivatives with respect to z to
express the TMZ and TEZ-polarized fields in different regions.

These functions incorporate the continuity condition between

dielectric layers and the boundary condition at .z = D (z = A)

implicitly. Namely, in regions 1 and 2, the functions @d. and

~& and their derivatives with respect to z can be expressed

as follows:

= P.(A, z~)P, (A, d~_J . . . P,(A, d_~l)[l, O]* (7)

and

= Ph(A,z,)F’h(A,d~-1) . . .Ph(A, d-kl)[O, I]T (8)

where zd = ~~~?fiI,j+o dj, Z~ = z — Zd, and z is located in
the ith layer of the dielectric substrate; whereas, in region 3,

the functions +b. and @’bhand their derivatives are given by

(9)
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Fig. 3. The integration path in the A plane,

and

= F’h(,x,.2i)Ph(A, -Cii+,) . .>h(A, –dN)[o, 1]~

(lo)

where Zb = XZ__M,J~O dj, and 2, = z — Z’b. The superscript

Tin (7)–( 10) <s–thetranspose operator and the column vectors

[l, O]T and [0, I]T come from the boundary conditions that

force the tangential electric fields to vanish on the PECS at

z= Oandz=A.

Similarly, with ~, and ~~, the following functions D,p (A)

whose zeros determine the allowable normalized propagation

constants of the PPM’s in the y direction for each region with a

given a, can be constructed. In Dip(A), the subscript i denotes

the region (i = 1, 2 or 3), while p = e or p = h, denotes the

TM= or TEZ polarization, respectively.

DI. (A) = [0, 1]~.(~, d~) . . .~c(~, d2)~e(.A, dl)

~e(A,d-l)~.(A,d-J . . .~.(~, d_hf)[l, O]T

D2.(A) = [0, l]~e(,l,d-l)~& d-z) . ~e(~, d-~) [1, O]T

D3.(A) = [0, l] P.(J, –dl)~,(~, –dz) . . .

.Pe(A, –dN)[l, o]T (11)

D1h(J) = [l, O]~h(A, dN) . . . Fh(A, ~z)~k(~, ~1)

. >h(A, d_l)~h(A, d_z) . ~>h(A, d_wl)[O, l]T

DZ~(A) = [1, 0]~~(.A, d_jj(A, d-z) ~k(,4, d_ M)[O, l]T

Dw(A) = [l, O]Pk(A, –dl)~~(~, –dz) ~.

. ~h(A, –dN)[O, l]T (12)

Since D,p is an even function of ,4, the roots +Aip~, n =

1,2,... are symmetrically paired with respect to the origin in

the ~ plane, as indicated in Fig. 3. Note that A,P~ lies in the

lower half ~ plane. while –A,P,L in the upper half A plane.

Now let us consider the incident field that is the mth TM,

polarized PPM obliquely incident onto the edge of the PEC

half plane from region 2; namely,

(13)

for –cm < y < co, O ~ z <D; where q. is the intrinsic

impedance of free space, the superscript ‘inc’ denotes the

incident fields, while the subscript ‘t’ denotes the tangential

fields and Am stands for Az,m for the sake of brevity. This

field can also be referred to as the unperturbed field because

it is the field that would exist if the PEC half plane were

extended to y -+ – co.

Usually, in the WH analysis, a small loss in the material

is introduced first and then the lossless case is treated as the

limiting case of vanishing loss afterwards. Here, the lossless

case is considered directly for simplicity. However, this should

by no means be a source of confusion. If the dielectric

materials are lossless and a is real, then the integration path

is along the real A axis, as shown in Fig. 3. The following

formulation is based on Jones’ method [4], [5].

The total fields are equal to the sum of the incident and

scattered fields; namely,

Etot = l#nC + ES, @Ot = @nC + HS (14)

where the superscripts ‘tot’ and ‘s’ denote the total and scat-

tered fields, respectively. Assume the spectral representation

of the scattered field for .z< D to

E;(A, z) = Ed(A) ‘de(A’ ‘)
@d,(~,D)

E:(A, z) = Hal(A)
+dh(~> ~)

@dh(~, D)

be

-%dh(w‘j (ax+ AY) ~do) 82
—

ko (cd + AZ) iw(~,D)
(15)

and for z > D,
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where c,(z) and pr (z) are piecewise constant functions which

assume the values CT~ and PT,, respectively, in the ith layer.

~~(~), Hd (~), @(~) and Hb (~) are the unknown functions to
be solved. The scattered fields in (15) and (16) already satisfy

the boundary condition for the PECS at z = O and z = A and

as well as the continuity condition at the interface between

any two dielectric layers for regions z < D and z > D. The

remaining condition that needs to be enforced is at z = D

where the PEC half plane resides; namely,

E:”t(y, z = D) = o; O<y<ec (17)

E:”t(y, z = ~_) =E:”t(y, z = ~+); –Co<y<o

(18)

H~t(y, z = ~_) =@Ot(y, z = ~+); –W<y<o

(19)

along with the edge condition near y = O,z = D and the

radiation condition for y 4 cc and – cm. With all the functions

defined above, the scattering problem of a PPM by a PEC

half plane embedded in a multilayered dielectric region is

reduced to a formulation that is similar to the corresponding

single-layered one,

Notice that in the spectral domain, the TM. and TEZ

potentials always give rise to tangential fields that are in one

of the following two mutually orthogonal directions for fixed

a and A; namely,

(20)

This property, which is also important in deriving the Green’s

functions in the SDA [10], [13], makes the decoupling of the

boundary conditions at z = D possible.

Boundary conditions (17) and (18) together imply that

E:(A, z=D-) = ~(),z = D+), (21)

since E~”c(y, z = D_) = E~(y, z = D+) = O for

—cc < y < co. From (15) and (16), one obtains two relations

and

The boundary condition (19) can be written as

H~Ot(y, z = D+) – @Ot(y, 2 = D-)

= -~ x J:”t(Y)> —co<y <cc (24)

where J$’t (y) is the total induced surface current on the PEC

half plane, which can be written as the sum of two portions:

The first portion J~(y) is the surface current induced by the

incident field and defined as

The other portion J:(y) is the unknown surface current

induced by the scattered field. Substituting (25) and (26) into

(24) and taking the Fourier transform yields

@(A,2 = D+) – H;(A, Z = D_)

=H~(A, Z= D-)–~X J:+(A) (27)

where the subscripts ‘+’ and ‘ –‘ denote the one-sided Fourier

transformed functions and

j 1 (/Amx+ ay) ~~c(–&,D)
~p(~,z = D-) = ——27r q~ (d + A&) (A+ Am) ’28)

from (13) and (3). Equation (27) actually involves two scalar

equations since it is in a vector form. Applying (27) in the u

direction and using (22) and (28) gives

(_–~1

27r A+Am–

+ rlo(ax + Ay)

where

)~2:mA2tide(-~m, D)

J:+ (A)m (29)

Similarly, applying [27) in the v direction and using (23) and

(28) gives

+ (–AX + fly) J:+(A) (31)

where

Q,(~) and Q~ (~), which are closely related to the Green’s
function kernels for the multilayered dielectric slab, are func-

tions to be factorized. The representation of Q=,h as a product

of two functions Q~+ ,h+ and Q e.. h_, which are regular
and free of zeros in the upper and lower half A planes,

respectively, is referred to as the factorization of Q.,k. Since

all the DjP(A) (i = 1, 2, 3; p = e, h) are regular and even

functions of A with simple zeros, the factorization is simple
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and the result is given in the appendix. Equations (29) and

(31) are the two WH equations that need to be solved. The

boundary condition (17) implies that ~ is regular in the lower

half A plane, or equivalently, 12a(A) Dz.(A)/&.(A, D) and

IIb (A) are regular in the lower half plane. From the edge

condition [4], we have ,%(A) - Y~, I16(A) - X~, J;+ .u -

Y~,j~+.ti w ~–1–~ as IAI ~ m where O<p< 1. Also, from

(11), (12), (30), and (32), it follows that Q.(A) w A, Qh(A) N

A-1, D2e(A)/?#&(A, D) N ~ as IAI ~ co. Thus, both (29) and

(31) can be written into a standard form of the WH equations

where one side of the equation is regular in the lower half

A plane while the other side is regular in the upper half A

plane. Note that there must be an overlapping region between

these two half planes, which is the real axis of the J plane

if ci is real and all the dielectrics are Iossless. By rearranging

(29) and (31), examining the behavior of various terms and

invoking Liouville’s theorem [4], one obtains

tTIE@~e(A) ~1

~Otibe(~, D) Q.- (~) ‘z(A+kJ

Jhe(-L, ~) Qe+(-L)

~ ‘@de(-An, D)———
27r (A+ Am) (Q.+(A) - Qc+(-~m))

~ ~m

+ Z(CYZ +,A:)
IL-L> ~)Qe+ (~)

+ VO(CIX+ Ay) . J:+ Qe+ (~)

= &@d.(–~m>D)Q.+ (–~m)cl (33)

and

–jPv,Hb _ j 1 a

QL (~) - 27r qo (d + AA)
vhe(-L, ~)Q~+(~)

+ (–Ax+ ay) .J:+ Q~+(A)

1—— —yk.(-Am, D) Q,+(-An)Cz (34)
– 27rr71J

where Cl and Cz are constants to be determined. Equations

(33) and (34) yield

~T,~b(~)&(~) “

klyq!&(A, D)
=& WL,~)Qe+(-L)

(
. cl–

)~ Q,. (~) (35)
m

and

P., Hb(~) = – &WA~)Qe+(-W

“ c2Qh. (~) (36)

The remaining task is to find the two unknown constants Cl

and C2. Substituting (35) and (36) into (16), and using the

condition that @(~, D) is regular in the lower half ~ plane

and thus cannot have a pole at A = –jcz, yields

Q.+ (.icu)
CIQ.+ (j~) + c2Qh+ (~~) = ~_ja + Am) . (37)

Also, expressing J:+ (J) as a sum of its components in the

u and C directions, which can be obtained from (33) and

(34), and then requiring that J:+ (A) be regular in the upper

half plane, which implies that J:+ (~) cannot have a pole at

A = ja, yields

c1 C2 1

Qe+(jCY) + Qh+ (j~) = (ju + k)Qe+ (ja) “
(38)

Thus, Cl and C2 can be solved as

c1 =

and

where

(39)

(40)

(41)

(42)

Substituting the result of Cl and C2 back to (35) and (36), the

expressions for the functions Eb (~) and Hb (~) are obtained.

Ed(~) and ~d(~) can be then be deduced from (22) and

(23), respectively. Consequently, all the terms for the scattered

fields in the spectral domain as defined in (15) and (16) are

known. The last step is to take the inverse Fourier transforms to

obtain the scattered fields in the spatial domain. This inversion

integral can be evaluated using the Cauchy Residue Theorem

after closing the original integration path (along the real A

axis) by a half circle of an infinitely large radius in the lower

half ) plane when v >0, and likewise in the upper half ~

plane when y <O.

B. Generalized Scattering Matrix for the Halj-Plane

To completely characterize the scattering properties of the

half-plane configuration depicted in Fig. 2, it is necessary to

consider six cases, namely, the incidence of a PPM from

each of the three regions where the PPM is either TM. or

TEZ polarized. The analysis of one case was presented in

the previous subsection; however, the analytical details of

the other five cases will not be discussed here because they

are similar to the one considered above. Thus, after solving

six canonical scattering problems, the generalized scattering

matrix that characterizes the PEC half plane edge discontinuity

can be written down. Let the z-components of the total

electiic and magnetic fields in different regions be expressed

as follows:

E.(y, z) = ~ [AfnejkO~’e”g + A;ne-3k0~1e~v]el~

n

Hz(y) 2) = ~ [B~ne3k”~’h~y + B;ne–~kO~lhny]hln

n

1(43)
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where i=2ify>0, z< Dand i=3ify>0, z> D. The

modal functions e,. and h,. for the ntb TM: and TEZ PPM’s

in region i are given by

4ck(Ale., ‘) e2n = 4de(A2.n, ‘)
eln =

ET(Z) ‘ ~ CT(Z’) ‘

e3n = ‘he(A3en ) ‘) (45)
ET(2)

(46)

The edge can be viewed as a three-port circuit where the

scattering matrix [S] is defined below.

[W]> [m> (W]) [W ([41>PmlT
= [S][([AI], [BZ]), ([AJ, [B~]), ([A;], [B~])]T

(47)

where

[A$]=[A:, A~. A:..],

[B>] =[B:, B;.. B:...], i=l>2>3. (48)

The matrix [S] consists of nine blocks of submatrices [S,j];

namely,

[

[s,,] [s,2] [s,3]

1
[s] = [s21] [s22] [s23] , (49)

[s3,] [s32] [s33]

where each block [S~j] contains four submatrices,

(50)

After lengthy algebraic manipulations, it turns out that all

the elements of the 36 submatrices can be expressed in a single

compact form instead of listing them case by case. Namely,

the mth row, nth column element of the submatrix [SjP,j ~],

denoted by SiP,j,(rn, n), is given by

Stp,jq(77L, ‘n) = ~ip(’m)~(~l ~; ~P,.~!l)”jq(n) (51)

i,j=l,20r 3;p, q=eorh; m,n=l,2,3. ... where

‘P2, (m) = I@
/

+ D2,(A = Az,m)

(52)

two parts,

.F(m, n; zp,jq) = Fl(m, n; zp, jcf)F2(m, n; zp,jq), (53)

where the first part Y1 (m, n; ip, jq) is the product of two Q+

functions,

{

Q,+(-)i,m) if i = 2,3
Fl(m, n; ip,.1’q) = llQP+(–)iPm) if

~=1 }

{

. Qq+ (–k ) if j=2,3

l/Qq+(-Ajq~) if j = 1 1
(54)

and the second part >. (m, n; ip, jq) is given by

Y’(m, n; zp, jq)

-{

[ARA, - a!2 + ja(AR + A,)!21]/(AR + AI)/(a2 + A;)

if (p, q) = (e, e)

jaf12/ql)/(a2 + A;) if (p, q) = (h, e)
—

–.jaQ2771J/(a2 + A;) if (P, q) = (e, h)

[AR), - 0!2 - ja(AR + A,)n,]/(AJ2 + A,)/(a2 + A;)

if (p, q) = (h, h)

(55)

where

{

A@m
AR = _A,

ifi = 2,3;

ZPm
ifi = 1

(

A3qltAI = _A
ifj = 2,3

~qn ifj = 1

The functions Ojq (n) are given below.

(56)

o~e(n) = –7j&(–A3,n, z = D)

III. TRANSVERSE RESONANCE RELATIONS

After solving the canonical half-plane scattering problem,

the second part of the WWGSMT scheme is to build the

transverse resonance relation via the GSMT [3], [4], [14],

[15]. Take the single microstrip line as an example. The

cross-section is depicted in Fig. 4(a), where [a;] and [bi]

are vectors consisting of the amplitudes of both the TMZ

and TEz polarized PPM’s, including all the propagating and

leading evanescent PPM’s. The arrows indicate the lateral

direction of wave propagation while the vertical dotted lines
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Fig. 4. (a) Cross-section of a single microstrip line and (b) the equivalent
network model.

indicate the reference planes for defining [a~], [bi] and the

scattering matrices. Assume that all the fields have the e‘~~0 ‘z

dependence in the longitudinal z-direction, where a is the

normalized modal propagation constant of the microstrip line

to be found. The microstrip line can then be viewed as two

discontinuities connected by two uniform transmission lines of

length w, one above and the other below the strip, as depicted

in Fig. 4(b). The scattering matrix [SR] in Fig. 4(b) is the [S]

matrix obtained in Section II while the matrix [SL] has a sign

difference in the elements corresponding to the cross-polarized

fields; namely,

S~,jq(rn, n) = S$,jg(m, n) if (p, q) = (e, e) or (h, h)

(58)

SR (m, n)f%,jq(w~) = – Zp,Jq if (p, q) = (e, h) or (}L, e)

(59)

The matrices [7’3(w/2)] and [T2 (w/2)] in Fig. 4(b) are diag-

onal matrices that represent the phase change for a distance

w/2 of the PPM’s in the parallel plate waveguide region above

and below the conductor strip, respectively. After rearranging

the equations and eliminating some unknowns, one obtains the

transverse resonance relation as follows [3], [4]:

[

[4 - [f%], -[’%]
1[ 1

[d = [()]
-[sg], [1]- [Sg] [a,] (60)

where [1] is the identity matrix and

k=2

All the matrices [SR], [SL], [T2] and ~1~] above are func-

tions of ~. The condition that the determinant of (60) vanishes

in order to have a nontrivial solution yields the desired values

of a. Therefore, similar to the SDA, the WH/GSMT yields

a matrix where the zeros of its determinant have to be

determined numerically. In the WH/GSMT, the corresponding

eigenvector yields the amplitudes of the PPM’s while in the

SDA, it gives the amplitudes of the current basis functions.

Actually, it can be said that the WH7GSMT employs inhomo-

geneous plane waves (PPM’s) as the field basis functions. The

transverse resonance relation for other planar transmission line

configurations can be obtained in a similar way and it will not

be shown here.

NUMERICAL RESULTS

based on the WHYGSMT scheme are

IV.

Numerical results

presented for various planar microwave/millimeter wave trans-

mission lines. There are two kinds of parameters one needs

to choose when applying the WH/GSMT. The first one is the

number of terms, denoted by IVIP, which is used for calculating

the infinite product ‘PiP(i = 1, 2, 3; p = e, h) in (72) and

(74). Usually, these numbers are not very critical as long as

they are large enough. The situation is similar to truncating

the Sommerfeld integral over the semi-infinite range in the

SDA. Although the relative convergence phenomenon is not

particularly observed, the rule NIP/A N iV2P/D w NSP/B,

which is required if the mode matching method is applied, is

still recommended. For most of the cases, IViP is smaller than

100. The second set of parameters are the number of PPM’s

retained in each region, which is analogous to the number

of basis functions used in the SDA. These numbers can be

estimated from the asymptotic behavior of J~Pn given in (68).

The accuracy of the WWGSMT method is assessed by com-

paring the results based on this method with those available in

the literature. Re[u] and ~m[a] denote the normalized phase

constant and normalized attenuation constant, respectively. For

the sake of convenience, the sign of Im[a] is neglected in the

results shown.

A. Single Microstrip Line (SA4S)

A wide SMS that was previously studied by Ermert [16],

[17] and Oliner et al. [6], [7] is considered in the first example.

Re[a] and lm[ti] are plotted as functions of frequency in Fig.

5 where the curves for IV = O, 1 and 2 correspond to the

dominant, first and second higher-order modes, respectively.

The dashed line in the Re[a] of Fig. 5 is the normalized phase

constant of the lowest order PPM between thd top and bottom

PEC planes, which will become the TMO surface wave when

the top cover is removed. The two dotted lines correspond to

values of ~ and <;=, respectively. The dashed line and

the ~ = 1 dotted line are the thresholds of surface wave

leakage and space wave radiation, respectively, when the top

cover is removed. As shown in Fig. 5 the dominant mode

is bounded for all frequencies since most of the fields are

concentrated under the strip and thus have a higher effective

dielectric constant. As the frequency increases, Re[a] of this

mode will approach the limit ~. The first and second

higher-order modes will have power leakage in the lateral

directions wheu their phase velocities are faster than that of

the PPM; the cut-off frequency for these higher order modes
is around 14.5 and 29.0 GHz, respectively.

Since the microstrip line is relatively wide, only 1 and 2

evanescent PPM’s are used for the region above and below

the strip, respectively, and NIP = 18, N2P = 4, N3P = 14; p =

e, h. The curves for Re [a] shown in Fig. 5 agree with [6] where
a simplified model is used, while Im [a] tends to be larger
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Fig. 5. The normalized phase constant Re[a] and attenuation constant

lm[a] of a SMS versus freqnency. Crl = 9.8, er2 = l.O, W = 3.0 mm,
t = 0.635 mm, h = 2.54 mm.

than that given in [6]. Note that it isusually more difficult to

achieve the same accuracy for Im [~] than Re[a].

B. Single Slotline(SSL)

Re[a] and Irn[a] of a single conductor-backed slotline as

functions of thenormalized slot width d/Ao aregiven in Fig.

6 where the solid line is obtained by the WH/GSMT while the

dotted and the dashed lines are calculated with the spectral

domain approach [11] and the spatial domain mode matching

method [20], respectively. The results based on these three

different methods generally agree well for both the real and

imaginary parts of a. The deviation when d/A. is small or

large is probably due to the numerical disadvantage inherent

in the method used; namely, the spectral domain approach

will require a large number of basis functions when the slot

width d is large while for the spatial domain mode-matching

method and the WWGSMT, many evanescent PPM’s have

to be included when d is very small. In this case, iVIP =

50, NTP = 20, N3P = 30; p = e, h and five evanescent PPM’s

are used in the slot region.

C. Coupled Microstrip Lines (CMS)

In Fig. 7, the even and odd mode dispersion characteristics
for three different types of CMS are given where the solid,

116
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0.0 0,5 1,0
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Fig. 6. The normalized phase constant Re[a] and attenuation con-
stant lm[a] versus the normalized slot width cl/ A.. + = 2.25,

t/~o = 0.267, ”h/Ao == 3,33.

dashed and dotted lines are for conventional CMS, CMS with

dielectric overlay, and inverted CMS, respectively. Although

the top PEC cover is put infinitely far in [18], the result in

Fig. 7 shows good agreement with [18] with H3 = 4H1. For

the overlayed CMS, the normalized phase constants of the

even and odd mode are both quite close to ~ (= ~)

for all the frequencies because most of the fields are confined

in those two dielectric layers. The dispersion curve for the

inverted CMS has the largest variation among the three ‘types

of CMS for the range of frequencies considered. In this case,

NIP = 40, iVZP = 8, N3P = 35; P = e, h and 7, 3, and 5
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evanescent PPM’s are used in the slot, below the strip and

above the strip, respectively.

The result for the characteristic impedance Zo which is

defined as F’/ll12/2 is given in Fig. 8, where 1 is the

longitudinal current and P is the total power over the cross-

section. The general shape for the characteristic impedance

based on the WH/GSMT agrees with that given in [18] but

thevalues are higher than [18]. The characteristic impedance

is more susceptible to numerical inaccuracies than the phase

constant. This is analogous to the situation of the numerical

computation of eigenvalues and eigenfunctions.

D. Antipodal Finline

The antipodal finline depicted in Fig. 9 is chosen as an

example to demonstrate the versatility of the WH/GSMT.

The same parameters as in [19] are used in order to make

a comparison. The normalized wavelength Ag/Ao (= l/Re[a])

and the characteristic impedance 20 versus the overlapped or

separation lengths of two fins of the antipodal finline are given

in Fig. 10. When the fins are overlapped, as depicted in Fig.

9(a), it behaves like a parallel plate waveguide with most of
the fields concentrated in the overlapped region. The antipodal

finline without overlapping, as depicted in Fig. 9(b), is similar

to a unilateral finline, and it also resembles a partially filled

waveguide as the two fins recede to the side walls.

For the overlapping case, the results for both Ag/Ao and

20 agree well with [19]. For the nonoverlapping case, the
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Fig. 8. Characteristic impedance defined by P/Iz versus frequency for three

types of CMS. HI = Hz = W,H3 = 4H1, S = 0.4 W, C,S = 1.0.
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Fig. 9. Parameters used to describe (a) overlapped and (b) nonoverlapped
antipodal fmline geometries. A = 2.845 mm, B = 5.69 mm, T = 01.127
mm, c, = 2.22.

agreement is reasonable for both Ag /Ao and ZO when the

operating frequency is 40 GHz. But for the other frequency,

namely for 27 GHz, which is close to the TEIO cut-off

frequency 26.35 GHz for the rectangular waveguide (WG-22)
enclosure, the result is qpite different from that in [19] for both

Ag/Ao and 2.. The impedance curves shown in Fig. 10(b) are

obtained from the expression V2/P. The integration path for

computing the voltage V for the overlapping case is a vertical

path connecting the centers of the overlapped sections of the

fins, whereas, it is a straight line between the edges of two
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20 of the antipodal finline.

fins for the nonoverlapping case. Actually, the nonoverlapping

case is not favorable for the WH/GSMT when the aspect ratio

S/B (= 0.5 S/A) is too small since many evanescent PPM’s

have to be included. This is why there is a gap between the

overlapping and nonoverlapping curves when SIA is small.

However, when S/A is around 0.3 to 0.6, the results based on

the WH/GSMT should be quite reliable, whereas, the spectral

domain approach, used in [19], may require a large number

of basis functions. Without further data from measurements

or from other numerical methods, it is difficult to state which

result is more accurate.

V. CONCLUSIONS

A novel approach, based on a hybrid procedure referred to
as the WH/GSMT, is developed to solve multilayered planar

transmission line problems. It is a rigorous, full-wave analysis

method. First, the scattering of an obliquely incident PPM

by the edge of a PEC half plane embedded in a multilay-

ered isotropic dielectric substrate within a PEC parallel plate

region is analyzed via the WH technique. This solution is

then incorporated in the formulation of the GSMT to find

the propagation constants and characteristic impedances of a

variety of planar transmission lines. The lateral power leakage
is taken into account rigorously in the WH/GSMT. Numerical

results including the cases for the microstrip line, conductor-

backed slotline, coupled microstrip lines, and the antipodal

finline are shown and compared with available references

found in the literature to assess the accuracy of the WH/GSMT.

Compared with the widely used spectral domain approach

(SDA), the WFUGSMT furnishes a different physical insight,

is suited for planar transmission line configurations with rela-

tively wide lateral dimensions, and requires similar amounts of

CPU time and memory storage space if the ratio between the

height and width of the parallel waveguide regions is not too

large, but requires a more involved analysis. The versatility

of the WWGSMT is relatively limited because the complexity

of the transverse resonance relations will increase rapidly as

the transmission line configurations become more complicated.

However, when the distance between the edges of the various

PEC strips (or half planes) on the same dielectric interface is

relatively large, the WFUGSMT may be more efficient than the

SDA. In fact, as the lateral dimensions of the transmission lines

become larger, the WH/GSMT becomes more efficient because

a fewer number of evanescent modes are needed. On the other

hand, the SDA becomes inefficient due to the large number

of basis functions needed to obtain an accurate solution. One

example where this point is demonstrated, is in the analysis of

a conductor-backed coplanar waveguide (CBCPW) with finite

extent lateral ground planes [20]–[23]. A detailed WWGSMT

based study of a CBCPW with single/double layered substrates

and with finite/infinite lateral ground planes will be described

in a separate paper. Generally, the WH/GSMT can be viewed

as a more efficient version of the spatial mode-matching

method and a complementary approach to the SDA. Note

that in the WH/GSMT, the scattering matrix is obtained

analytically, whereas, in the spatial mode matching method,

this matrix is obtained numerically.

VI. APPENDIX: FACTOW?XTION OF Qe(.A) AND Q~ (~)

As defined in (30) and (32).

Q.(A) =
D2e(,4)D3e(A)

koq(,x) ‘

and

(62)

(63)

There is more than one way to factorize QJ and Q~ such

that

Q,(A)= Qe_(~)Qe.(~) (64)

and

Q~(~) = Q~+ (~)QL (~). (65)

where Qe+(_l (A) and Qh+(_) (A) are regular and free of zeros

in the upper (lower) half A plane.

We also require

Q.+(-A) = Q,- (A) (66)

and

Q~+(-~) = Qh. (~). (67)
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It is known that when m is large [24],

A3em ~ –j
(rn-l)n

koB

(68)

Based on the asymptotic behavior of these roots, a fast

converging factorization for Q. [25] is given as follows.

Qe+ (A) = [Q.(A = 0)]1/2e~(A) (l-*)(l-N
() A
l–—

~le,

~2,(~)%(~)g(A)

m(~)

where

x(J) ‘~~ [D in (A/D) + B in (A/B)]

I’(1 – jAkoA/x)
g(,’1) =

r(l – jx40B/Tp7(l – jAkOD/m) ‘

17 is the Gamma function and
w

no- Vk%+l)

PI.(A) = :=1
H(1 - jAkOA/nT)

rz=l

m

%!.(A) = :=1

~(1 - jM@/n7r)

n=l

H(1 - ~/~3en+1)

T’3e(A) = :=1

~(1 - jAk@/n7r)
n=l

Similarly,

where

(69)

(70)

(71)

(72)

(73)

fi(l- vh.)

P3h(A) = :=1 (74)

l-(1 - jX@/nn)
n=l

Since the variables Q and A always appear in the form a2 + A2—
in ~, and ~k, they can be treated as a single variable

Y = ~2 + ~2 when the zeros of Dip are se~ched. Once -IIiP. is
determined, a2 can be subtracted from T~Pn to get A~Pn. Thus,

there is no need to search for ~%Pnagain when a changes.
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